33=t^2+4t+22

Simple and best practice solution for 33=t^2+4t+22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 33=t^2+4t+22 equation:



33=t^2+4t+22
We move all terms to the left:
33-(t^2+4t+22)=0
We get rid of parentheses
-t^2-4t-22+33=0
We add all the numbers together, and all the variables
-1t^2-4t+11=0
a = -1; b = -4; c = +11;
Δ = b2-4ac
Δ = -42-4·(-1)·11
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{15}}{2*-1}=\frac{4-2\sqrt{15}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{15}}{2*-1}=\frac{4+2\sqrt{15}}{-2} $

See similar equations:

| 2/5x+3=-35 | | 9(c+6)c=7 | | 11x+10=135 | | u-3/5=9 | | x/4=2/18 | | 1/39(q+3)=5 | | 17h=68 | | 6x=3x+5,000 | | p/7+23=15 | | 61+90+x=189 | | 5+9x=-27x+x | | 52/8=6r4 | | 1.2x=1x | | 11x-10=135 | | 11x+10=122 | | x+1+5=90 | | 2x-72=96 | | 4x=(-0.5)x | | 11x+20=135 | | q/4+12=15 | | w/2+5=8 | | 12x-8=5-3x | | 47+90+a=180 | | -7(x-4)-8=-3(x+3) | | 17x+5=16x-5 | | 17x+5=16x−5 | | 6x+33=14-39 | | x=2(3.14)(5)(30) | | 9/35=x/24 | | (8x-10)=70 | | 6(1.02^(5x+1))=8 | | w2+ 5=8 |

Equations solver categories